DIPLOMADO DATA SCIEN

MACHINE LEARNING E INTELIGENCIA ARTIFICIAL, DEEP LEARNING

MODALIDAD ON-LINE

SOFTWARE: R, PYTHON, SPARK, SQL*

Nuevos contenidos sobre la Inteligencia Artificial para lenguaje natural de tipo ChatGPT

PRESENTACIÓN DEL DIPLOMADO

Miércoles 16 de abril 2025 19:00 hrs.

INICIO DE CLASES

Lunes 21 de abril 2025 19:00 hrs.

TÉRMINO DE INSCRIPCIONES

14 de Abril de 2025 o hasta completar cupo máximo.

*Se incluye acceso a la plataforma cloud de Amazon Web Services (AWS).

PROFESORES

HAMDI RAISSI

PhD Universidad de Lille, Francia, Profesor Adjunto PUCV.

ERICK LÓPEZ

PhD Universidad Técnica Federico Santa María, Profesor Asociado PUCV.

MARIO GUZMÁN

Magister en Estadística PUCV, Data Scientist y Profesor Agregado PUCV.

PATRICIO VIDELA

Profesor Auxiliar PUCV y Jefe de Docencia del Instituto de Estadística.

CONTACTO

diplomado.estadistica@pucv.cl

CLASES

Abril	21	23	28	30					
Mayo	5	7	12	14	19	26	28		
Јиміо	2	4	9	11	16	18	23	25	30
Julio	2	7	9	14	21	23	28	30	
Agosto	4	6	11	13			3/1	- 4	

El programa considera 96 hrs. Cronológicas.

Todas las clases son de 3 horas y empiezan a las 19 hrs. en modalidad "online"**

TEMARIO

TEMAS BÁSICOS

1. ESTADÍSTICA DESCRIPTIVA Y INTRODUCCIÓN A R

- a. Como utilizar R, funciones básicas, estrategias para elegir los paquetes R.
- b. Estadísticas descriptivas y su visualización.
- c. Tipos de variables en los

2. TOMA DE DECISIÓN EN UN **ENTORNO ALEATORIO**

- a. Test estadístico.
- b. Intervalos de confianza para pronósticos.

3. ANÁLISIS DE ASOCIACIÓN **DE VARIABLES**

- a. Estrategias para medir la correlación entre variables: Pearson, Spearman o Kendall?
- Modelos lineales simples: Estimación MCO, Diagnóstico de bondad. Test de normalidad.
- c. One way ANOVA y two way ANOVA, razón de correlación.

4. MÉTODOS MULTIVARIADOS **EN ESTADÍSTICA**

Análisis por componentes principales (ACP).

TEMAS AVANZADOS

- a. Estimación MCO, diagnóstico de bondad (t-test, test de Fisher) y tipos de predicción (individual y del fenómeno estudiado).
- poblacional de Chow.
- Identificación de las variables pertinentes (Cp de Mallows, Criterios de información, algoritmos de selección forward, stepwise y backward). Como introducir las variables categóricas en un modelo lineal.
- d. Problema de colinealidad u soluciones (regresión PCR, PLS,
- Datos outliers (atípicos): detección y diagnostico (leverages, residuos studentizados, distancia de Cook, DFBETAS). Solución con la estimación robusta de Theil-Sen y Siegel, estimación M.
- Heteroscedasticidad y autocorrelación: diagnóstico (test de Durbin Watson, tests deBreusch-Pagan) y estimación

2. MÉTODOS NUMÉRICOS DE ALTO **NIVEL COMPUTACIONAL**

TEMPORALES

y ARMA

Identificación: Autocorrelaciones (ACF), Autocorrelaciones parciales (PACF), Criterios de información.

Estimación: Máximo de verosimilitud.

Diagnóstico y predicción. Modelos SARIMA.

1. MODELOS LINEALES MÚLTIPLES

Test de homogeneidad

- regresión Ridge, LASSO y elastic

- a. Introducción a EC2 de AWS.
- Métodos bootstrap.

3. MODELOS PARA DATOS

Modelamiento univariado de datos temporales con modelos AR, MA

4. MODELIZACIÓN DE **RENDIMIENTOS FINANCIEROS**

Hechos estilizados de las series de tiempo

Modelos GARCH.

Medir los riesgos en finanza: Valor en Riesgo (Value-at-Risk, VaR).

5. INTRODUCCIÓN A SQL

- a. Comandos SQL y tipos de datos.
- b. Modelos relacionales.
- Rutinas de comandos en SQL Server
- d. Depuración de datos para resolución de problemas.
- e. Conexión a SQL Server desde R.

6. INTRODUCCIÓN A SPARK

- a. Tratamiento de data frame.
- Análisis descriptivo.
- Categorización de bases. Rutinas de Pyspark.

7. ALGORITMO DE K-MEDIAS

- a. Medidas de similaridades.
- Algoritmo K-medias. Clustering Jerárquico.
- d. Métricas de validación. e. Aplicaciones en R.

8. ÁRBOLES DE DECISIÓN

- a. Clasificación del árbol.
- Requisitos y supuestos de los
- Interpretación de los resultados.
- Predicción y Evaluación.
- e. Aplicaciones en R.

9. RANDOM FOREST

a. Introducción al Random Forest. Entrenamiento de un modelo

Evaluación del rendimiento del

- Random Forest. Evaluación de out-of-bab error.
- modelo Random Forest. e. Aplicaciones en R.

10. MODELO DE REGRESIÓN LOGÍSTICA

interpretación.

- a. Presentación del modelo e
- b. Validación de supuestos.
- Ajuste del Modelo e interpretación de resultados.
- d. Estudio de caso aplicado en R: Evaluación y Construcción.

11. MÁQUINAS DE VECTORES DE SOPORTE

- a. Definición de hiperplano de separación.
- b. Clasificador de margen máximo.
- SVM para clasificador linealmente separable.
- d. SVM para clasificador linealmente no separable.
- Extensión de las máquinas de
- vectores de soporte. f. Métricas de validación.
- g. Aplicaciones en R.

12. REDES NEURONALES

- a. Arquitectura de una red.
- b. Perceptrón.
- c. Función de activación. d. Back-propagation.
- e. Métricas de validación.

Aplicaciones en R. 13. TEXT MINING

- a. Homologación de textos en base a cercanía de textos.
- b. Arquitectura del web scraping.
- c. Aplicaciones de web scraping y cercanía de textos en Python.

14. MANEJO DE HERRAMIENTAS

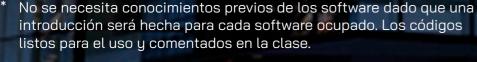
- **DE AWS** a. Introducción a S3.
- b. Gestión de permisos con IAM.
- d. Introducción a SageMaker. Rutinas de modelos de ML en SageMaker con Python.

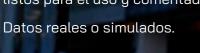
Redes virtuales en la nube VPC.

15. SISTEMAS DE RECOMENDACIÓN

- a. Filtros colaborativos.
- b. Sistema basado en usuarios e items.
- c. Aplicaciones de sistemas de recomendación en R.

16. DEEP LEARNING


- a. Introducción al Deep Learning.
- b. Redes convolucionales (CNN).
- c. Arquitectura Alexnet. Aplicaciones de CNN con
- 17. INTELIGENCIA ARTIFICIAL PARA LENGUAJE NATURAL


framework torch en Python.

a. IA como modelos generativos. b. LLM (Large Language Models)

desde una perspectiva

- Estadística. Características de un LLM: tamaño muestral, ventana de contexto, ingeniería de prompts.
- d. Oportunidades, limitaciones y riesgos en el uso de LLM.
- Caso de uso: usando un modelo de tipo ChatGPT.

